evrogen

pPA-TagRFP-tubulin vector

The vector sequence has been compiled using the informa tion from sequence databases, published literature, and othe This vector has not been completely sequenced.

For vector sequence, please visit our Web site at
http://www.evrogen.com/products/vectors.shtm

Location of features

$P_{\text {CMV IE }}$: 1-589
Enhancer region: 59-465
TATA box: 554-560
Transcription start point: 583
Kozak consensus translation initiation site: 600-610 PA-TagRFP: 607-1311
Start codon (ATG): 607-609
Last amino acid in PA-TagRFP: 1309-1311
Tubulin: 1342-2697
Stop codon: 2695-2697
SV40 early mRNA polyadenylation signal
Polyadenylation signals: 2858-2863 \& 2887-2892
mRNA 3' ends: 2896 \& 2908
f1 single-strand DNA origin: 2955-3410
Bacterial promoter for expression of Kan ${ }^{r}$ gene
-35 region: 3472-3477; -10 region: 3495-3500
Transcription start point: 3507
SV40 origin of replication: 3751-3886
SV40 early promoter
Enhancer (72-bp tandem repeats): 3584-3655 \& 3656 3727
21-bp repeats: 3731-3751, 3752-3772 \& 3774-3794 Early promoter element: 3807-3813
Major transcription start points: 3803, 3841, 3847 \& 3852
Kanamycin/neomycin resistance gene Neomycin phosphotransferase coding sequences: Start codon (ATG): 3935-3937; Stop codon: 4727-4729 G->A mutation to remove Pst I site: 4117
C->A (Arg to Ser) mutation to remove BssH II site: 4463 Herpes simplex virus (HSV) thymidine kinase (TK) polyadenylation signal
Polyadenylation signals: 4965-4970 \& 4978-4983 pUC plasmid replication origin: 5314-5957

Product	Cat:\#
pPA-TagRFP-tubulin vector	FP814
Vector type	mammalian expression vector
Reporter	mg
Reporter codon usage	PA-TagRFP
Promoter for PA-TagRFP	mammalian
Host cells	P $_{\text {CMVIE }}$
Selection	mammalian
	prokaryotic - kanamycin eukaryotic - neomycin (G418)
Replication	prokaryotic - pUC ori
Use	eukaryotic - SV40 ori
	red fluorescent labeling of α-tubulin filaments

Vector description

pPA-TagRFP-tubulin is a mammalian expression vector encoding PA-TagRFP-tubulin fusion protein. The vector can be used for fluorescent labeling of α-tubulin in living cells.

PA-TagRFP codon usage is optimized for high expression in mammalian cells (humanized) [Haas et al. 1996] Human α-tubulin is fused to the PA-TagRFP C-terminus. To increase mRNA translation efficiency, Kozak consensus translation initiation site is generated upstream of the PA-TagRFP-tubulin coding sequence [Kozak 1987].
pPA-TagRFP-tubulin vector can be used as a source of PA-TagRFP-tubulin hybrid sequence. The vector backbone contains unique restriction sites that permit its excision and further insertion into expression vector of choice.
Note: The plasmid DNA was isolated from dam ${ }^{+}$-methylated E.coli. Therefore some restriction sites are blocked by methylation. If you wish to digest the vector using such sites you will need to transform the vector into a dam ${ }^{-}$host and make fresh DNA.
The vector backbone contains immediate early promoter of cytomegalovirus ($\mathrm{P}_{\mathrm{CMVIE}}$) for protein expression, SV40 origin for replication in mammalian cells expressing SV40 T-antigen, pUC origin of replication for propagation in E. coli, and $f 1$ origin for single-stranded DNA production. SV40 polyadenylation signals (SV40 poly A) direct proper processing of the 3 '-end of the reporter mRNA.
SV40 early promoter ($\mathrm{P}_{\text {sv40 }}$) provides neomycin resistance gene (Neo^{r}) expression to select stably transfected eukaryotic cells using G418. Bacterial promoter (P) provides kanamycin resistance gene expression (Kan') in E. coli. Kan ${ }^{\text {r }} / \mathrm{Neo}^{\text {r }}$ gene is linked with herpes simplex virus (HSV) thymidine kinase (TK) polyadenylation signals.

Expression in mammalian cells

pPA-TagRFP-tubulin vector can be transfected into mammalian cells by any known transfection method CMV promoter provides strong, constitutive expression of the PA-TagRFP-tubulin fusion in eukaryotic cells. If required, stable transformants can be selected using G418 [Gorman 1985].

Propagation in E. coli

Suitable host strains for propagation in E. coli include DH5alpha, HB101, XL1-Blue, and other general purpose strains. Plasmid incompatibility group is pMB1/CoIE1. The vector confers resistance to kanamycin ($30 \mu \mathrm{~g} / \mathrm{ml}$) to E. coli hosts. Copy number in E. coli is about 500 .

References

Gorman, C. (1985). "High efficiency gene transfer into mammalian cells." In: DNA cloning: A Practical Approach, Vol. II. Ed. by Glover. (IRL Press, Oxford, U.K.) Pp. 143-190.
Haas, J. et al. (1996) "Codon usage limitation in the expression of HIV-1 envelope glycoprotein." Curr Biol, 6 (3): 315-324 / pmid: 8805248

Kozak, M. (1987) "An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs." Nucleic Acids Res, 15 (20): 8125-8148 / pmid: 3313277

Notice to Purchaser:

PA-TagRFP-related materials (also referred to as "Products") are intended for research use only.
The Products are covered by European Pat. 1994149 and other Evrogen Patents and/or Patent applications pending. By use of these Products, you accept the terms and conditions of the applicable Limited Use Label License \#001: http://www.evrogen.com/products/Evrogen-FP-license.shtmI.
The CMV promoter is covered under U.S. Patents $5,168,062$ and $5,385,839$, and its use is permitted for research purposes only. Any other use of the CMV promoter requires a license from the University of Iowa Research Foundation, 214 Technology Innovation Center, Iowa City, IA 52242.
MSDS information is available at http://www.evrogen.com/MSDS.shtmI

